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1. MOTIVATION AND PREVIOUS DISCUSSIONS 
In our previous discussions we investigated a situation where a measurement device       covering a section      of the real 

axis can detect an event  . The location of this event   is then known with precision   . The event density of this event was 

given by              where      is the unknown density of our event on the real axis. In such a measurement situation we 

developed the intuition that the uncertainty of location and event density should obey an uncertainty relation as follows  

(1)                

Several attempts to derive a rigorous version of this intuitive equality failed by the lack of compatibility with the statistical 

interpretation of quantum mechanics as described by –what we call – the “Stanford paper” about the uncertainty principle 

(plato.stanford.edu/entries/qt-uncertainty/). 

1.1. Motivation to investigate uncertainty relations of normal distributions 
Since our intuitive uncertainty relation (1) is an equality (reaching a minimum) this gives rise to look at the situations in 
quantum mechanics where uncertainty relation inequalities reach their minimum (and turn into equalities). These situations 
are given by coherent states       obeying 
 

     
  ̂      

  ̂  
  

 
. 

 
As we will see in the next section the simplest coherent states    are represented by normal distributions 
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    where        √      . 

 

Thus, we can hope to find a rigorous version of (1) by investigating uncertainty relations of normal distributions. The major 
result of this brief paper is: If an event (action) is normally distributed with unknown parameters   and  , i.e. with an 
unknown normal density function, than, in fact, position and event density of events are complementary and we cannot 
determine by one single measurement both, location and event density, precisely. Equivalently, one cannot determine by one 
single measurement both location and the risk parameter   of the normal distribution to arbitrary precision. If we know the 

location     with precision   then we know the inverse of the risk parameter     maximally  with precision√
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2. COMPARISON TO COHERENT GROUND STATES OF A QUANTUM HARMONIC OSCILLATOR. 
Consider a quantum harmonic oscillator as described by the following Hamiltonian 
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with momentum operator   ̂     
 

  
 and position operator  ̂   . From the quantum mechanics of the harmonic oscillator 

we know that the eigenstates    of   satisfy the following time-independent Schroedinger equation: 
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    the density function of a normal distribution           around mean zero. 

Then the (zero-particle) ground state    (i.e. we consider the case     in equation (2)) is defined as follows: 

(3)              √       √  
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I.e. the square   
     of the ground-state is a normal distribution with zero mean and variance   . 
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From the literature (see e.g. en.wikipedia.org/wiki/Normal_distribution#Fourier_transform_and_characteristic_function) we 

know that the Fourier transform of a normal distribution with mean zero and variance    is also a normal distribution with 

zero mean and variance    .  A similar argument leads to the formulation of the following lemma. 

Lemma 1 
The Fourier transform of the ground state       is given by 
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I.e. the square      
 of the Fourier transform of the ground-state    is a normal distribution too, with zero mean and 

variance  
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Proof.           
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Theorem 1 
The ground state    is coherent, i.e. 
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Proof.  The result follows directly from equation (3), Lemma 1, the fact that    
      and       

  ̂     
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Definition 1 
The action density (here also called event density)  ̂ for actions   in the ground state    representing a normal distribution 

  
             is defined in p-coordinates of the Fourier transform as follows:   

 

 
 ̂            | |          | |       

 
with the expectation value 
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Remark:  ̂ is not an observable represented by a linear Hermitian operator, but can be viewed as the absolute value of an 
observable represented by a Hermitian operator. Here the action density can be viewed as the absolute value of the 
momentum of a actions   in the ground state   . 
 

 

Lemma 2 
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I.e. the expected value of the action density is   times the density at the expected value of the location x. 
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Proof.    
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Lemma 3 
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Proof. It follows from the definition of the action density (Definition 1):  
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Lemma 4 
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Proof. Since    
  ̂    and, by Lemma 3,    

  ̂      
  ̂   it follows that:       
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  ̂    The result now follows from Theorem 1 and Lemma 2.    

 

Theorem 2 
If actions   occur in a (coherent) ground state   , where   

            then 
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I.e. action density and position of normally distributed actions   are complementary. 
 
 

Proof.  The result follows directly from and Lemma 1 and Theorem 1 implying       
  ̂       
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3. APPLICATIONS AND SUGGESTIONS FOR FURTHER DISCUSSIONS 
The findings of Lemma 2, Lemma 4 and Theorem 2 can potentially have broader applications than just in quantum physics. 

E.g. in statistics: 

Application in statistics 
Let   be a normally distributed random variable with unknown density g(              . Let   be an apparatus 
measuring statistically relevant information about  and  . If a measurement   results in one single real number   then the 
following statement holds true: 
 

if   bares information about the location of    with precision  , 

 then   cannot bare more information about     than with precision √
   

 
   and vice versa. 

 

Interpretation remark: This is true for every given quantized value of     ,  meaning that   drops out of the equations 
if applied to statistics. 
 

 

This is only one example for potential applications outside quantum physics. A more detailed discussion about the 

interpretation of the findings of this brief paper could lead to further applications, e.g. also in finance. Especially a discussion 

with regard to the interpretation remark of the above mentioned statistical application might be very fruitful. Might there be a 

kind of “generalization principle” of the uncertainty relations for normal distributions? Could we claim, e.g., that every normal 

distribution           can be regarded as generated by a coherent ground state of realizations of one quantized action 

      , which could have meaning also outside the realm of quantum physics?  
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